
Chapter 2

Getting the Tools That You Need
In This Chapter
▶ Installing Java
▶ Downloading and installing the Android software tools
▶ Checking your Eclipse configuration
▶ Getting the code in this book’s examples

e
rgaliophile / r g li fa l/ noun 1. A lover of tools. 2. A person who visits
garage sales for rusty metal implements that might be useful someday

but probably won’t. 3. A person whose computer runs slowly because of the
daily, indiscriminate installation of free software tools.

Several years ago, I found an enormous monkey wrench (more than a yard
long and weighing 35 pounds) at a nearby garage sale. I wasn’t a good
plumber, and to this day any pipe that I fix starts leaking again immediately.
But I couldn’t resist buying this fine piece of hardware. The only problem
was, my wife was sitting in the car about halfway down the street. She’s much
more sensible than I am about these matters, so I couldn’t bring the wrench
back to the car. “Put it aside and I’ll come back for it later,” I told the seller.

When I returned to the car empty-handed, my wife said, “I saw someone
carrying the world’s largest pipe wrench. I’m glad you weren’t the one who
bought it.” And I agreed with her. “I don’t need more junk like that.”

So of course I returned later that day to buy the monkey wrench, and to this
day the wrench sits in our attic, where no one ever sees it. If my wife ever
reads this chapter, she’ll be either amused or angry. I hope she’s not angry,
but I’m taking the risk because I enjoy the little drama. To add excitement to
my life, I’m turning this trivial secret into a public announcement.

The Stuff You Need
This book tells you how to write Java programs, and before you can write
them, you need some software tools. Here’s a list of the tools you need:

26 Part I: Getting Started with Java Programming for Android Developers

 ✓ A Java virtual machine

 Cool people refer to this item as the JVM or simply as Java.

 ✓ The Java code libraries

 These code libraries are known affectionately as the Java Runtime
Environment (JRE) or simply as Java.

 ✓ An integrated development environment

 You can create Java programs using geeky, keyboard-only tools, but
eventually you’ll tire of typing and retyping commands. An integrated
development environment (IDE), on the other hand, is a little like a word
processor: A word processor helps you compose documents (memos,
poems, and other works of fine literature); in contrast, an IDE helps you
compose computer programs.

 For composing Java programs, I recommend using the Eclipse IDE.

You should also gather these extra goodies:

 ✓ Some sample Java programs to help you get started

 All examples in this book are available for download from www.all
mycode.com/Java4Android.

 ✓ The Android Software Development Kit

 The Android Software Development Kit (SDK) includes lots and lots of
prewritten, reusable Android code and a bunch of software tools for
running and testing Android apps.

 The prewritten Android code is the Android Application Programming
Interface (API). The API comes in several versions — versions 9 and 10
(both code-named Gingerbread), versions 11, 12, and 13 (Honeycomb),
versions 14 and 15 (Ice Cream Sandwich), and so on.

 ✓ Android-oriented add-ons for the integrated development environment

 By using add-ons, you customize the Eclipse IDE to help you compose,
run, and test your Android apps. The set of Eclipse add-ons for working
with Android apps is the Android Development Toolkit (ADT).

All these tools run on the development computer — the laptop or desktop
computer you use to develop Java programs and Android apps. After you
create an Android app, you copy the app’s code from the development
computer to a target device — a phone, a tablet, or (someday soon) a
refrigerator that runs Android.

Here’s good news: You can download from the web all the software you need
to run this book’s examples for free. The software is separated into three
downloads:

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android

27 Chapter 2: Getting the Tools That You Need

 ✓ This book’s website (www.allmycode.com/Java4Android) has a link
to all code in the book.

 ✓ When you visit www.java.com, you can click a button to install the Java
virtual machine.

 ✓ A button at the page http://developer.android.com/sdk gives
you the big Android SDK download. In spite of its name, it includes more
than simply the Android code libraries. The download includes all the
ingredients you didn’t already collect from www.allmycode.com or
www.java.com.

 The websites I describe in this chapter are always changing. The software
programs you download from these sites change, too. A specific instruction
such as “Click the button in the upper-right corner” becomes obsolete (and
even misleading) in no time at all. So in this chapter, I provide explicit steps,
but I also describe the ideas behind them. Browse the suggested sites and
look for ways to get the software I describe. When a website offers you several
options, check the instructions in this chapter for hints on choosing the best
option. If your computer’s Eclipse window doesn’t look quite like the one in
this chapter’s figures, scan your computer’s window for whatever options I
describe. If, after all that effort, you can’t find the elements you’re looking for,
check this book’s website (www.allmycode.com/Java4Android) or send
an e-mail to me at Java4Android@allmycode.com.

If You Don’t Like Reading Instructions . . .
I start this chapter with a brief (but useful) overview of the steps required
in order to get the software you need. If you’re an old hand at installing
software, and if your computer isn’t quirky, these steps will probably serve
you well. If not, you can read the more detailed instructions in the next
several sections.

 1. Visit www.allmycode.com/Java4Android and download a file
containing all the program examples in this book.

 2. Visit www.java.com and download the Java Runtime Environment (if
you don’t already have a recent version of Java on your computer).

 Choose a version of the software that matches your operating system
(Windows, Macintosh, or whatever) and your operating system’s word
length (32-bit or 64-bit).

 3. Visit http://developer.android.com/sdk and download the
Android Software Development Kit (SDK).

 The downloaded bundle is a .zip archive file.

http://www.allmycode.com/Java4Android
http://www.java.com
http://developer.android.com/sdk
http://www.allmycode.com
http://www.java.com
http://www.allmycode.com/Java4Android
mailto:BeginProg@allmycode.com
http://www.allmycode.com/Java4Android
http://www.java.com
http://developer.android.com/sdk

28 Part I: Getting Started with Java Programming for Android Developers

 4. Extract the contents of the downloaded archive file to your local hard
drive.

 On my Windows computer, I extract the .zip file’s contents to a new
folder, named c:\Users\MyUserName\adt-bundle-windows-x86.
So I have the folders shown in Figure 2-1.

Figure 2-1:
My

Windows
computer’s

adt-
bundle

folder.

 On my Mac, I extract the .zip file’s contents into my existing
Applications folder, as shown in Figure 2-2.

Figure 2-2:
My Mac’s

adt-
bundle

folder.

 If the Android SDK .zip file contains more than one folder, don’t
separate the folders when you extract the .zip file’s contents. Extract
all content inside the .zip file to the same place on your hard drive.

 5. Launch the Eclipse app.

 The first time you run a fresh, new copy of Eclipse, the Welcome screen
appears.

 6. Dismiss the Welcome screen.

 For most versions of Eclipse, you can dismiss the Welcome screen by
clicking the little x icon that appears on a tab above the screen.

 7. Import the code that you downloaded in Step 1.

29 Chapter 2: Getting the Tools That You Need

 In Eclipse, choose File➪Import➪Existing Projects into Workspace. Then
browse for this book’s sample code — the .zip file from Step 1. (If the
web browser automatically expanded the .zip archive, browse for the
folder containing the files that were in the archive.)

 8. Create an Android virtual device.

 You can test Android programs on a phone or a tablet. But, for
convenience, you might test on an emulator — a program that behaves
like a phone or a tablet but runs on the development computer.

 To run an emulator, you need an Android Virtual Device (AVD), which is
a set of specs for a device (processor type, screen size, screen resolution,
and Android version, for example). In Eclipse, you create an AVD by
choosing Window➪Android Virtual Device Manager and filling in the
blanks. For more info, see the later section “Creating an Android Virtual
Device.”

For details about any of these topics, see the next several sections.

Those pesky filename extensions
The filenames displayed in My Computer or
in a Finder window can be misleading. You
may browse a directory and see the name
Mortgage . The file’s real name might
be Mortgage.java, Mortgage.class,
Mortgage.somethingElse, or plain
old Mortgage. Filename endings such as .zip,
.java, and .class are filename extensions.

The ugly truth is that, by default, Windows and
Macs hide many filename extensions. This
awful feature tends to confuse programmers.
If you don’t want to be confused, change your
computer’s systemwide settings. Here’s how to
do it:

 ✓ In Windows XP: Choose Start➪Control
Panel➪Appearance and Themes➪Folder
Options. Then skip to the fourth bullet.

 ✓ In Windows 7: Choose Start➪Control
Panel➪Appearance and Personalization➪

Folder Options. Then skip to the fourth
bullet.

 ✓ In Windows 8: On the Charms bar,
choose Settings➪Control Panel. In the
Control Panel, choose Appearance and
Personalization➪Folder Options. Then
proceed to the following bullet.

 ✓ In all versions of Windows (XP and
newer): Follow the instructions in one of
the preceding bullets. Then, in the Folder
Options dialog box, click the View tab. Look
for the Hide File Extensions for Known File
Types option. Make sure that this check
box is not selected.

 ✓ In Mac OS X: In the Finder application’s
menu, select Preferences. In the resulting
dialog box, select the Advanced tab and
look for the Show All File Extensions option.
Make sure that this check box is selected.

30 Part I: Getting Started with Java Programming for Android Developers

Getting This Book’s Sample Programs
To get copies of this book’s sample programs, visit www.allmycode.com/
Java4Android and click the link to download the programs in this book.
Save the download file (Java4Android_Programs.zip) to the computer’s
hard drive.

 In some cases, you can click a download link all you want but the web browser
doesn’t offer you the option to save a file. If this happens to you, right-click
the link (or control-click on a Mac). From the resulting contextual menu, select
Save Target As, Save Link As, Download Linked File As, or a similarly labeled
menu item.

Most web browsers save files to the Downloads directory on the computer’s
hard drive. But your browser may be configured a bit differently. One way or
another, make note of the folder containing the downloaded Java4Android_
Programs.zip file.

Compressed archive files
When you visit www.allmycode.com/
Java4Android and you download this
book’s examples, you download a file named
Java4Android_Programs.zip. A zip
file is a single file that encodes a bunch of
smaller files and folders. For example, my
Java4Android_Programs.zip file
encodes folders named 06-01, 06-02, and
so on. The 06-02 folder contains subfolders,
which in turn contain files. (The folder named
06-02 contains the code in Listing 6-2 — the
second listing in Chapter 6.)

A .zip file is an example of a compressed
archive file. Other examples of compressed
archives include .tar.gz files, .rar files,
and .cab files. When you uncompress a file,
you extract the original files stored inside the
larger archive file. (For a .zip file, another
word for uncompressing is unzipping.)
Uncompressing normally re-creates the folder

structure encoded in the archive file. So
after uncompressing my Java4Android_
Programs.zip file, the hard drive has
folders named 06-01, 06-02, with subfolders
named src and bin, which in turn contain files
named TypeDemo1.java, TypeDemo1.
class, and so on.

When you download Java4Android_
Programs.zip, the web browser may
uncompress the file automatically for you. If not,
you can see the .zip file’s contents by double-
clicking the file’s icon. (In fact, you can copy
the file’s contents and do other file operations
after double-clicking the file’s icon.) One way
or another, don’t worry about uncompressing
my Java4Android_Programs.zip file.
When you follow this chapter’s instructions,
you can import the contents of the file into the
Eclipse IDE. And behind the scenes, the Eclipse
import process uncompresses the .zip file.

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android

31 Chapter 2: Getting the Tools That You Need

Gathering Information
For many people (including some inexperienced people), the installations
of Java and the Android SDK are routine tasks. Visit a few websites, click
some buttons, and then take a coffee break. But as you follow this chapter’s
instructions, you might have a question, experience a difficulty, or encounter a
fork in the road. In that case, it helps to know your computer — which entails
jotting down the answers to a few questions.

Are you running a 32-bit or
64-bit operating system?
In this chapter, you install Java and the Android SDK on your computer. Java
comes in two flavors: 32-bit and 64-bit. The Android SDK comes in the same
two flavors, and in order for the Android SDK to work with Java, the Java
flavor must match the Android SDK flavor. In this section, you find out which
flavor is best for your computer.

 The steps in this section are all optional. If you don’t want to perform this
section’s fact-finding missions, try visiting www.java.com and http://
developer.android.com/sdk to download whichever versions of Java and
the Android SDK are offered to you by these two websites. If either site makes
you choose between 32-bit and 64-bit software, be consistent. That is, get the
32-bit versions of both Java and the Android SDK, or get the 64-bit versions
of both Java and the Android SDK. (For Windows, the 32-bit versions are the
safest choice. For Mac, the 64-bit versions are the safest.)

For Windows 8, Windows 7, and Windows Vista:
 1. Press the Windows key.

 In Windows 8, the Start screen appears. In Windows 7 and Windows
Vista, the Start menu appears.

 2. In Windows 8, type the words Control Panel, and then press Enter. In
Windows 7 or Windows Vista, click the Control Panel item on the Start
menu.

 The Control Panel appears.

 3. In the Control Panel, select System and Security (Windows 8 and
Windows 7) or System and Maintenance (Windows Vista).

http://www.java.com
http://developer.android.com/sdk
http://developer.android.com/sdk

32 Part I: Getting Started with Java Programming for Android Developers

 The System window appears. To recognize the System window, look for
the words View basic information about your computer
near the top of the window.

 4. In the System window, look for the words System type.

 The system type is either 32-bit or 64-bit, as shown in Figure 2-3.

Figure 2-3:
Determining

the system
type.

For Windows XP
 1. Press the Windows key.

 The Start menu appears.

 2. Click the My Computer item on the Start menu.

 Windows Explorer opens.

 3. In Windows Explorer, navigate to Drive C.

 4. In Drive C, look for folders named Program Files and Program
Files (x86).

 If you find Program Files but not Program Files (x86) folders,
you’re running 32-bit Windows. If you find both Program Files and
Program Files (x86) folders, you’re running 64-bit Windows.

For Macintosh OS X
 1. Choose Apple➪About This Mac.

 The About This Mac window appears.

33 Chapter 2: Getting the Tools That You Need

How many bits does your computer have?
As you follow this chapter’s instructions, you
may be prompted to choose between two
versions of a piece of software — the 32-bit
version and the 64-bit version. What’s the
difference, and why do you care?

A bit is the smallest piece of information that
you can store on a computer. Most people
think of a bit as either a zero or a one, and
that depiction is quite useful. To represent
almost any number, you pile several bits next
to one another and do some fancy things with
powers of two. The numbering system’s details
aren’t showstoppers. The important thing to
remember is that each piece of circuitry inside
the computer stores the same number of bits.
(Well, some circuits inside the computer are
outliers with their own particular numbers of
bits, but that’s not a big deal.)

In an older computer, each piece of circuitry
stores 32 bits. In a newer computer, each piece
of circuitry stores 64 bits. This number of bits
(either 32 or 64) is the computer’s word length.
In a newer computer, a word is 64 bits long.

“Great!” you say. “I bought my computer last
week. It must be a 64-bit computer.” Well, the
story may not be that simple. In addition to a
computer’s circuitry having a word length, the
operating system on it also has a word length.
An operating system’s instructions work with a
particular number of bits. An operating system
with 32-bit instructions can run on either a
32-bit computer or a 64-bit computer, but
an operating system with 64-bit instructions
can run only on a 64-bit computer. And to
make things even more complicated, each
program that you run (a web browser, a word
processor, or one of your own Java programs)
is either a 32-bit program or a 64-bit program.
You may run a 32-bit web browser on a 64-bit
operating system running on a 64-bit computer.
Alternatively, you may run a 32-bit browser on

a 32-bit operating system on a 64-bit computer.
(See the figure that accompanies this sidebar.)

When a website makes you choose between
32-bit and 64-bit software versions, the
main consideration is the word length of the
operating system, not the word length of the
computer’s circuitry. You can run a 32-bit word
processor on a 64-bit operating system, but you
can’t run a 64-bit word processor on a 32-bit
operating system (no matter what word length
the computer’s circuitry has). Choosing 64-bit
software has one primary advantage: 64-bit
software can access more than 3 gigabytes of
a computer’s fast random access memory. And
in my experience, more memory means faster
processing.

How does all this information about word
lengths affect Java and Android SDK
downloads? Here’s the story:

 ✓ If you run a 32-bit operating system, you run
only 32-bit software.

 ✓ If you run a 64-bit operating system, you
probably run some 32-bit software and
some 64-bit software. Most 32-bit software
runs fine on a 64-bit operating system.

 ✓ On a 64-bit operating system, you might
have two versions of the same program. For
example, on my Windows computer, I have
two versions of Internet Explorer: a 32-bit
version and a 64-bit version.

 Normally, Windows stores 32-bit programs
in its Program Files (x86) directory
and stores 64-bit programs in its Program
Files directory.

 ✓ A chain of word lengths is as strong as
its weakest link. For example, when I visit
www.java.com and click the site’s Do
I Have Java? link, the answer depends on
the match between my computer’s Java

(continued)

http://www.java.com

34 Part I: Getting Started with Java Programming for Android Developers

(continued)

version and the web browser that I’m
running. With only 64-bit Java installed
on my computer, the Do I Have Java? link
in my 32-bit Firefox browser answers, No
working Java was detected on
your system. But the same link in my
64-bit Internet Explorer answers, You
have the recommended Java
installed.

 ✓ Here’s the most important thing to
remember about word lengths: When you

follow this chapter’s instructions, you install
Java software and Android SDK software
on the computer. The Java software’s word
length must match the Android SDK’s word
length. In other words, 32-bit Android SDK
software runs with 32-bit Java, and 64-bit
Android SDK runs with 64-bit Java. I haven’t
tried all possible combinations, but when I
try to run the 32-bit Android SDK with 64-bit
Java, I see the misleading error message
No Java virtual machine was
found.

 2. In the About This Mac window, look for the word Processor.

 If your processor is an Intel Core Solo or Intel Core Duo, you have a
32-bit Mac. All other Intel processors, including Intel Core 2 Duo, are
64-bit Macs. (See Figure 2-4.)

35 Chapter 2: Getting the Tools That You Need

Figure 2-4:
Displaying

the Mac
processor

type.

 Here’s an alternative (geeky) way to find out whether your Mac is a 32-bit or
64-bit operating system: In the Spotlight, type the word Terminal, and then
press Enter. Then when the Terminal app opens, type uname -a and press
Enter. If the Mac’s response includes i386, you have a 32-bit system. If the
Mac’s response includes x86_64 instead, you have a 64-bit system.

If you’re a Mac user, which version
of Mac OS X do you have?
To answer a burning question about the Macintosh operating system, follow
these steps:

 1. Choose Apple➪About This Mac.

 The About This Mac window appears.

 2. In the About This Mac window, look for the word Version.

 You see Version 10.8 (or something like that) in very light gray text.
(Refer to Figure 2-4.)

 The Android development software for the Mac requires OS X 10.5.8 or later,
and an Intel processor. If the About This Mac window reports that you have a
PowerPC processor or that your version of OS X is older than OS X 10.5, you’ll
have a hard time developing Android apps. (For versions such as OS X 10.5.1,
you can try updating the system to version 10.5.8. For systems before OS X
10.5, and for systems running on PowerPC processors, you can search the web
for hacks and workarounds. Of course, if you use hacks and workarounds, I
make no promises.)

36 Part I: Getting Started with Java Programming for Android Developers

 If you don’t regularly apply software updates, choose Software Update from
the Apple menu. In the resulting window, look for OS X updates and for items
with the word Java in them. Select the relevant items, and then click the
appropriate Install or Update button (or buttons). In addition, you can follow
the instructions in the next section to find out whether the www.java.com
website recommends updates.

Is a recent version of Java
installed on your computer?
Android development requires Java 5.0 or later. Java 6 is recommended (but
not absolutely required). Java 7 and beyond are overkill.

 You might see Java 1.5 and Java 1.6 rather than Java 5.0 and Java 6. Some
people understand the differences these names make, but few people care.
(If you’re one of the people who care, see Chapter 1.)

Follow these steps to check for a recent version of Java on your computer:

 1. Visit www.java.com.

 2. On the main page at www.java.com, click the Do I Have Java? link.

 3. On the Do I Have Java? page, click the Verify Java Version button.

After a brief pause, the java.com site reports that you have Java Version 7
Update 9, or something like that.

 ✓ If you have Java version 6 or higher, you’re good to go. You don’t have
to install any other Java version. You can skip this chapter’s later
section “Setting Up Java.”

 ✓ If the java.com site doesn’t report that you have Java 6 or later, don’t
fret. The java.com site might be wrong!

 After all, a 32-bit web browser can’t detect a 64-bit version of Java, and
(as of early 2013) no browser running in Windows 8 mode can even
detect Java. The potential pitfalls are endless.

 Anyway, if java.com doesn’t report that you have Java 6 or later, I
suggest following the instructions in the section “Setting Up Java.” If you
accidentally install a second version of Java (or a third or fourth version
of Java), you’ll probably be okay.

http://www.java.com
http://www.java.com
http://www.java.com

37 Chapter 2: Getting the Tools That You Need

Setting Up Java
You can get the latest, greatest version of Java by visiting www.java.com.
The site offers several alternatives.

 ✓ (Recommended) Click the big Free Java Download button on the site’s
main page.

 For most computers, clicking this Free Java Download button gives you
all the Java you need for this book’s examples. So if you’re unsure what
to do when you visit www.java.com, click the Free Java Download
button and move to the section “Setting Up the Android SDK,” later in
this chapter.

 If you’re running Mac OS X 10.6 or earlier (or if you’re running OS X 10.7
and you haven’t upgraded to OS X 10.7.3 or later), clicking the Free Java
Download button opens a “Sorry, Charlie!” page that tells you to download
Java directly from Apple. Follow the instructions on that page to install
Java on your computer.

 ✓ (Optional) Follow the Do I Have Java? link.

 When you follow this link, the web browser scans the computer for Java
installations. For this book’s examples, I recommend Java 6 (also known
as Java 1.6) or later (Java 7, Java 8, or whatever). If your version of Java
is older than Java 6 (or if the scan doesn’t find Java on the computer),
I recommend clicking one of the Download buttons at www.java.com.

 ✓ (Optional) Pick and choose among Java versions.

 If you click the All Java Downloads link at www.java.com, you can pick
and choose from among several versions of Java — 32-bit and 64-bit
versions for Windows, Mac, Linux, and Solaris computers.

 This alternative is useful for overriding the default Free Java Download
button’s choice. For example, you want the 64-bit version of Java even
though the Free Java Download button gives you the 32-bit version. (See
the sidebar “How many bits does your computer have?” earlier in this
chapter.) Later, you might visit www.java.com with a Windows computer
to download Java for your Macintosh.

 ✓ (Optional) Cleanse your computer of all but the latest version of Java.

 At www.java.com, the Remove Older Versions link promises to clean
up any Java clutter you’ve collected over time. I’ve had some good luck
and some bad luck in keeping multiple Java versions on a computer. In
my opinion, this Remove Older Versions step is optional.

http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com

38 Part I: Getting Started with Java Programming for Android Developers

 Visit the Remove Older Versions link if you’re having trouble that you
suspect is Java related. But if you’ve read several chapters of this book
and the examples are running nicely, don’t worry about an impending
disaster from not having followed the Remove Older Versions link.

Setting Up the Android SDK
In this section, you get four useful tools in one download. Here’s how:

 1. Visit http://developer.android.com/sdk.

 2. Click the Download button on the web page.

 3. Agree to all the legal mumbo-jumbo.

 4. Choose between the 32-bit and 64-bit downloads.

 For sage advice, see the earlier section “Are you running a 32-bit or
64-bit operating system?”

 After you make a choice, one last Download button appears. (At least,
that’s what happens early in 2013.)

 5. Click the last Download button and save the download to the local
hard drive.

 The downloaded file is one big .zip archive.

 6. Extract the contents of the downloaded archive file to the local hard
drive.

 On my Windows computer, I extract the .zip file’s contents to the new
folder c:\Users\MyUserName\adt-bundle-windows-x86. On my
Mac, I extract the .zip file’s contents to my existing Applications
folder. (Refer to Figures 2-1 and 2-2.)

 For help with archive files, see the earlier sidebar “Compressed archive files.”

 In Windows, the blank space in the name Program Files confuses some
Java software. I don’t think any of this book’s software presents this problem,
but I can’t guarantee it. If you want, extract the .zip file’s contents to the C:\
Program Files or C:\Program Files (x86) folder. But make a mental
note about your choice (in case you run into any trouble later).

The .zip archive that you download from http://developer.android.
com/sdk contains these two components:

http://developer.android.com/sdk
http://developer.android.com/sdk
http://developer.android.com/sdk

39 Chapter 2: Getting the Tools That You Need

 ✓ The eclipse component: It contains a customized version of the popular
Eclipse integrated development environment (IDE). You can compose,
run, and debug Java applications in the Eclipse environment. This
customized version of Eclipse includes the Android Development
Toolkit (ADT) — extra plug-ins for working with Android apps.

 ✓ The sdk component: (Yes, only half of the large Android SDK download
is the SDK component. If the names are misleading, don’t blame me.)
The SDK component contains the Android software library (one or more
versions of the Android API). This component also contains a bunch of
software tools for running and testing Android apps.

While you’re still in the mood to follow my advice, note the location on the
hard drive where the sdk component lands. (For example, in Figure 2-1, the
SDK folder is c:\Users\Barry\adk-bundle-windows-x86_64\sdk.) I
have a name for this location: the ANDROID_HOME folder.

Running Eclipse for the First Time
The first time you launch Eclipse, you perform a few extra steps. To get
Eclipse running, follow these steps:

 1. Launch Eclipse.

 In Windows, the Start menu may not have an Eclipse icon. In that case,
look in Windows Explorer (it’s File Explorer in Windows 8) for the folder
containing the extracted Eclipse files. Double-click the icon representing
the eclipse.exe file. (If you see an eclipse file but no eclipse.exe
file, check the sidebar “Those pesky filename extensions,” earlier in this
chapter.)

 On the Mac, go to the Spotlight and type Eclipse in the search field.
When Eclipse appears as the Top Hit in the Spotlight’s list, press Enter.

 When you launch Eclipse, you see the Workspace Launcher dialog box,
as shown in Figure 2-5. The dialog box asks where, on the computer’s
hard drive, you want to store the code that you will create using Eclipse.

 2. In the Workspace Launcher dialog box, click OK to accept the default
(or don’t accept the default).

 One way or another, it’s no big deal.

 Because this is your first time using a particular Eclipse workspace,
Eclipse starts with a Welcome screen, as shown in Figure 2-6.

40 Part I: Getting Started with Java Programming for Android Developers

Figure 2-5:
The Eclipse
Workspace

Launcher.

Figure 2-6:
The

Welcome
screen for
Android’s

customized
version of

Eclipse.

 3. Dismiss the Welcome screen.

 In most versions of Eclipse, you can dismiss the Welcome screen by
clicking the little x icon that appears on a tab above the screen.

 A view of the main screen, after opening Eclipse with a brand-new
workspace, is shown in Figure 2-7.

41 Chapter 2: Getting the Tools That You Need

Figure 2-7:
The Eclipse
workbench

with a
brand-new

workspace.

Dude, where’s my Android SDK?
When you launch Eclipse, the Eclipse IDE looks on the hard drive for the
prewritten, reusable Android code files. (After all, Eclipse uses these files to
help you write and run Android apps.) If Eclipse has trouble finding these
files, you see a nasty-looking Could Not Find SDK Folder message. To tell
Eclipse where to install the Android SDK files, follow these steps:

 1. In Windows, in the Eclipse main menu, choose Window➪Preferences.
On the Mac, in the Eclipse main menu, choose Eclipse➪Preferences.

 The Eclipse Preferences dialog box opens.

 2. In the tree list on the left side of the Preferences dialog box, select
Android.

 Don’t expand the Android branch of the tree. Simply click the word
Android.

 The SDK Location field appears in the main body of the Preferences
dialog box, as shown in Figure 2-8.

42 Part I: Getting Started with Java Programming for Android Developers

Figure 2-8:
Telling

Eclipse
about the

location of
the Android

SDK.

 3. Click the Browse button and (of course) browse to the ANDROID_HOME
directory.

 For example, in Figure 2-1, the ANDROID_HOME directory is c:\Users\
Barry\adt-bundle-windows-x86_64\sdk.

 4. Click Apply and OK, and all those good things to return to the main
Eclipse workbench.

 Look again at Figure 2-8 and notice the text box in the window’s upper-left
corner — the box containing the words type filter text. The text box is for
filtering the names of Eclipse preferences. Figure 2-8 displays only 11 preferences
(such as General, Android, Ant, and C++). But this list of preferences expands
to a tree with approximately 150 branches. Each branch refers to its own set
of choices in the main body of the Preferences window. If you want to see a
bunch of Eclipse preferences related to font (for example), type font in the
little text box. Eclipse then displays only branches of the tree containing the
word font.

Eclipse, meet Java!
Eclipse normally looks on the computer for Java installations and selects an
installed version of Java to use for running your Java programs. The com-
puter may have more than one version of Java, so double-check Eclipse’s
Java version selection. The steps in this section show you how.

 The steps in this section are optional. Follow them only if you suspect that
Eclipse isn’t using your computer’s favorite version of Java.

43 Chapter 2: Getting the Tools That You Need

 1. In Windows: From the Eclipse main menu, choose Window➪
Preferences. On the Mac: From the Eclipse main menu, choose
Eclipse➪Preferences.

 As a result, the Eclipse Preferences dialog box appears. (You can follow
along in Figure 2-9.)

Figure 2-9:
The

Installed
JREs page

of the
Eclipse

Preferences
dialog box.

 2. In the tree on the left side of the Preferences dialog box, expand the
Java branch.

 3. Within the Java branch, select the Installed JREs subbranch.

 4. Look at the list of Java versions (Installed JREs) in the main body of
the Preferences dialog box.

 In the list, each version of Java has a check box. Eclipse uses the version
whose box is checked. If the checked version isn’t your preferred
version (for example, if it isn’t version 6 or later), you have to make
changes.

 5. If your preferred version of Java appears in the Installed JREs list,
select that version’s check box.

 6. If your preferred version of Java doesn’t appear in the Installed JREs
list, click the Add button.

 When you click the Add button, the JRE Type dialog box appears, as
shown in Figure 2-10.

44 Part I: Getting Started with Java Programming for Android Developers

Figure 2-10:
The JRE

Type dialog
box.

 7. In the JRE Type dialog box, double-click Standard VM.

 As a result, the JRE Definition dialog box appears, as shown in
Figure 2-11. What you do next depends on a few different factors.

Figure 2-11:
The JRE

Definition
dialog box

(after you’ve
followed

Steps 8
and 9).

45 Chapter 2: Getting the Tools That You Need

 8. Fill in the JRE Home field in the dialog box.

 How you do this depends on the operating system:

	 •	In Windows: Browse to the directory in which you’ve installed
your preferred Java version. On my many Windows computers,
the directory is either C:\Program Files\Java\jre7, C:\
Program Files\Java\jdk1.7.0, C:\Program Files (x86)\
Java\jre8, or something of that sort.

	 •	On the Mac: Use the Finder to browse to the directory in which
you’ve installed your preferred Java version. Type the name of the
directory in the dialog box’s JRE home field.

 My Mac has one Java directory, named /System/Library/
Java/Java Virtual Machines/1.6.0jdk/Contents/
Home, and another Java directory named /Library/Java/
JavaVirtualMachines/JDK 1.7.0.jdk/Contents/Home.

 Directories such as /System and /Library don’t normally appear
in the Mac’s Finder window. To browse to one of these directories
(to the /Library directory, for example) choose Go➪Go to Folder
on the Finder’s menu bar. In the resulting dialog box, type /Library
and then press Go.

 As you navigate toward the directory containing your preferred
Java version, you might encounter a JDK 1.7.0.jdk icon, or
another item whose extension is .jdk. To see the contents of this
item, control-click the item’s icon and then select Show Package
Contents.

 You might have one more thing to do back in the JRE Definition dialog box.

 9. Look at the JRE Name field in the JRE Definition dialog box; if Eclipse
hasn’t filled in a name automatically, type a name (almost any text) in
the JRE Name field.

 10. Dismiss the JRE Definition dialog box by clicking Finish.

 The Preferences dialog box in Eclipse returns to the foreground. Its
Installed JREs list contains the newly added version of Java.

 11. Select the check box next to the newly added version of Java.

 You’re almost done. (You have a few more steps to follow.)

 12. Within the Java branch on the left side of the Preferences dialog box,
select the Compiler subbranch.

 In the main body of the Preferences dialog box, you see the Compiler
Compliance Level drop-down list, as shown in Figure 2-12.

46 Part I: Getting Started with Java Programming for Android Developers

Figure 2-12:
Setting the

compiler
compliance

level.

 13. In the Compiler Compliance Level drop-down list, select 1.5 or 1.6.

 Android works with only Java 1.5 or 1.6.

 14. Whew! Click the Preferences dialog box’s OK button to return to the
Eclipse workbench.

Importing this book’s sample programs
This import business can be tricky. As you move from one dialog box to the
next, you see that many of the options have similar names. That’s because
Eclipse offers many different ways to import many different kinds of items.
Anyway, if you follow these instructions, you’ll be okay:

 1. Follow the steps in this chapter’s earlier section “Getting This Book’s
Sample Programs.”

 2. On the Eclipse main menu, choose File➪Import, as shown in Figure 2-13.

 As a result, Eclipse displays the Import dialog box.

 3. In the tree in the Import dialog box, expand the General branch.

 4. In the General branch, double-click the Existing Projects into
Workspace subbranch, as shown in Figure 2-14.

 As a result, the Import Projects dialog box appears.

 5. In the Import Projects dialog box, choose the Select Root Directory or
the Select Archive File radio button, as shown in Figure 2-15.

47 Chapter 2: Getting the Tools That You Need

Figure 2-13:
Starting to
import this

book’s code.

Figure 2-14:
Among all

the options,
select

Existing
Projects into
Workspace.

48 Part I: Getting Started with Java Programming for Android Developers

Figure 2-15:
The Import

Projects
dialog box.

 This book’s code lives in a folder named Java4Android_Programs or
in an archive file named Java4Android_Programs.zip.

 Safari on a Mac generally uncompresses .zip archives automatically,
and Windows browsers (Internet Explorer, Firefox, Chrome, and others)
do not uncompress .zip archives automatically. For the complete
scoop on archive files, see the earlier sidebar “Compressed archive files.”

 6. Click the Browse button to find the Java4Android_Programs.zip
file or the Java4Android_Programs folder on the computer’s hard
drive.

 If you’re unsure where to find these items, look first in a folder named
Downloads.

 After you find Java4Android_Programs, the Import Projects dialog
box in Eclipse displays the names of the projects inside the file. (Refer to
Figure 2-15.)

 7. Click the Select All button.

 This book’s examples are so exciting that you’ll want to import all of them!

 8. Click the Finish button.

 As a result, the main Eclipse workbench reappears. The left side of the
workbench displays the names of this book’s Java projects, as shown in
Figure 2-16.

49 Chapter 2: Getting the Tools That You Need

Figure 2-16:
Eclipse

displays a
bunch of

Java
projects.

After importing the code from this book, you may see lots of red error
markers indicating trouble with the book’s projects. If you do, stay calm. The
markers might disappear after several seconds. If they don’t, check the lower
area of the Eclipse workspace for a message similar to Unable to resolve
target ‘android-15’.

If you see such a message, it means that my book’s code insists on an API
level that you haven’t installed on your computer. To fix the problem, do the
following:

 1. On the Eclipse main menu, choose Window➪Android SDK Manager.

 As a result, the computer displays the Android SDK Manager. (No
surprise here!)

 2. Select the check box labeled Android 4.0.3 (API 15) or in whichever
box is labeled with the missing API level number.

 3. Click the Install button in the lower-right corner of the Android SDK
Manager window.

 4. Wait for installation to finish.

 5. Close the Android SDK Manager.

 6. Restart Eclipse.

When Eclipse restarts, you see the red error markers for a few seconds. But
after a brief (and possibly tense) waiting period, the error markers go away.
You’re ready to roll.

50 Part I: Getting Started with Java Programming for Android Developers

Creating an Android Virtual Device
You might be itching to run some code, but first you must have something
that can run an Android program. By something, I mean either an Android
device (a phone, a tablet, an Android-enabled toaster — whatever) or a
virtual device. An Android Virtual Device (AVD) is a test bed for Android code
on the development computer.

The Android SDK comes with its own emulator — a program that behaves like
a phone or a tablet but runs on the development computer. The emulator
translates Android code into code that the development computer can
execute. But the emulator doesn’t display a particular phone or tablet device
on the screen. The emulator doesn’t know what kind of device you want
to display. Do you want a camera phone with 800-x-480-pixel resolution, or
have you opted for a tablet device with its own built-in accelerometer and
gyroscope? All these choices belong to a particular AVD. An AVD is simply a
bunch of settings, telling the emulator all the details about the device to be
emulated.

Before you can run Android apps on your computer, you must first create at
least one AVD. In fact, you can create several AVDs and use one of them to
run a particular Android app.

To create an AVD, follow these steps:

 1. In the Eclipse main menu, choose Window➪Android Virtual Device
Manager.

 The Android Virtual Device Manager window opens.

 2. In the Android Virtual Device Manager window, click New, as shown
in Figure 2-17.

 The Create New Android Virtual Device (AVD) window opens. That’s nice!

 3. In the AVD Name field, type a new name for the virtual device.

 You can name your device My Sweet Petunia, but in Figure 2-18, I name
my device Nexus7_Android4.2. The name serves to remind me of this
device’s capabilities.

 4. In the Device drop-down menu, select a device type.

 In Figure 2-18, I select Nexus 7 (7.27", 800 x 1280: tvdpi).

 5. Determine the kind of secure digital (SD) card your device has.

 In Figure 2-18, I choose an SD card with a modest 1000 MiB, which is
roughly 1 gigabyte. Alternatively, I could have selected the File radio
button and specified the name of a file on my hard drive. That file would
be storing information as though it were a real SD card on a real device.

51 Chapter 2: Getting the Tools That You Need

Figure 2-17:
The Android

Virtual
Device

Manager.

 Recently, my department hired a new person. We offered a salary of
$50K, which (we thought) meant $50,000 per year. Little did we know
that the new person expected to be paid $51,200 each year. Computer
scientists use the letter K (or the prefix Kilo) to mean 1,024 because
1,024 is a power of 2 (and powers of 2 are quite handy in computer
science). The trouble is, the formal meaning of Kilo in the metric system
is 1,000, not 1,024. To help clear things up (and to have fun creating new
words), a commission of engineers created the Kibibyte (KiB) meaning
1,024 bytes, the Mebibyte (MiB) which is 1,048,576 bytes, and the
Gibibyte (GiB), meaning 1,073,741,824 bytes. Most people (computer
scientists included) don’t know about KiBs or MiBs, and they don’t
worry about the difference between MiBs and ordinary megabytes.
I’m surprised that the creators of the Android Virtual Device Manager
thought about this issue.

 6. Leave the other choices at their defaults (or don’t, if you don’t want
to) and click the Create AVD button.

 The computer returns you to the Android Virtual Device Manager
window, where you see a brand-new AVD in the list, as shown in
Figure 2-19.

And that does it! You’re ready to run your first Android app. I don’t know
about you, but I’m excited. (Sure, I’m not watching you read this book, but
I’m excited on your behalf.) Chapter 3 guides you through the run of a stan-
dard Oracle Java program, and Chapter 4 does the same for an Android appli-
cation. Go for it!

52 Part I: Getting Started with Java Programming for Android Developers

Figure 2-18:
Creating

a new
Android

virtual
device.

Figure 2-19:
You’ve

created an
Android

virtual
device.

	Part I: Getting Started with Java Programming for Android Developers
	Chapter 2: Getting the Tools That You Need
	The Stuff You Need
	If You Don’t Like Reading Instructions . . .
	Getting This Book’s Sample Programs
	Gathering Information
	Setting Up Java
	Setting Up the Android SDK
	Running Eclipse for the First Time

	About the Author

